Category Archives: Uncategorized

What Your Naturally Occurring Iron Levels Say About You

Iron: too much and you’re at risk for liver disease; too little and you’re anemic. As much as 18% of Americans use a supplement containing iron, but a new study published in both the Journal of the American Heart Association and PLoS Medicine made connections between naturally occurring iron levels and more than 900 health conditions.

With more than half a million individuals’ genetic data making it possible, the study focused only on naturally occurring iron levels (as opposed to iron levels impacted by supplementation). Genetic variation leads to different levels of naturally occurring iron among individuals, just like genetic variation leads to blonde and brunette hair or short and tall people.

Interestingly, naturally higher iron levels were associated with potential benefits and potential risks that seemed, at least in part, contradictory. 

Potential Benefits of More Naturally Occurring Iron

People with genetic variants leading to naturally higher iron levels were also (on average) associated with having a lower risk of high cholesterol levels. Too much cholesterol and it’ll build up in the arteries and increase the risk of blocking blood flow. More here

Additionally, naturally higher iron levels were associated with a reduced risk of clogged arteries, like what can happen with excessive cholesterol levels in the blood, which can lead to health conditions like stroke, deep vein thrombosis, and atherosclerosis. 

Potential Health Risks Associated with More Naturally Occurring Iron

The study also found that higher naturally occurring iron levels were linked to higher risk of blood clots as a result of slow blood flow. More on poor circulation here

Higher naturally occurring iron levels was also found to be associated with higher risk of bacterial skin infection.

Making Sense of the Results

In a very unsatisfying conclusion, lead study author Dr. Dipender Gill essentially said that there is still a lot scientists don’t understand about how iron levels influence the relationship between cholesterol levels, circulation, and blood flow-related health conditions like stroke, deep vein thrombosis, and atherosclerosis. 

It’s likely that the same genetic variation responsible for different levels of naturally occurring iron influences individual risk for conditions like high cholesterol, poor circulation, or stroke. Perhaps in future studies, Gill and the research team will control for different factors (age, sex, BMI, etc) to see what health differences make higher naturally occurring levels of iron beneficial versus potentially harmful.

Iron Basics*

As a component of hemoglobin, iron helps carry oxygen around to the body’s tissues like the wheels of a taxi carrying humans from point A to point B. In addition to being oxygen’s preferred form of transportation, iron provides support for:

  • Metabolism
  • Growth and development
  • Normal cellular functioning
  • Hormone production
  • Connective tissue production

So yeah, iron is pretty important. But the name of the game when it comes to iron intake is balance. Too much? Liver damage. Too little? Anemia.

Recommended Dietary Allowances (RDAs) for iron intake vary based on age and, for women, pregnancy status (PSA: these recommendations were developed by the Food and Nutrition Board (FNB) at the Institute of Medicine (IOM) of the National Academies (formerly National Academy of Sciences)).

Image credit: National Institutes of Health Office of Dietary Supplements

You can get iron from all sorts of dietary sources. Plants like nuts, beans, and vegetables along with iron-fortified foods contain nonheme iron, while meat, seafood, and poultry contain both nonheme and heme iron, which is more biologically available, or bioavailable, for absorption during digestion. Think of it like this: an amount of iron in a piece of steak is more “valuable” to you than the same amount of iron in your spinach salad. Heme iron gives you more bang for your buck. That being said, vegetarians and vegans need to eat a lot more to get enough iron for good health.

Iron Supplements: Synthetic and Whole Food

The average iron supplement provides 18 mg of iron. However, multivitamins for women most always contain iron while multivitamins intended for men and for seniors often do not. Iron-only synthetic supplements typically deliver more than the RDA, as much as 360% (65 mg). 

Whole food iron supplements usually contain a percentage of iron that’s closer to the RDA, closer to 10%. Ingredients in natural supplements based on whole foods are arguably more bioavailable than synthetic supplements because they imitate how those ingredients are found in nature. So the 10% of iron in a whole food supplement will be absorbed in the body at a higher rate than the 360% in the synthetic supplement. Natural supplements that deliver a nutrient in its “natural habitat” – a whole food matrix. This delivery method is more aligned with what the body needs. Although, ultimately a whole food source of iron is the superior choice to any sort of supplementation.

What other questions do you have about iron? Let me know at ScienceKara@gmail.com

*Courtesy of the National Institutes of Health Office of Dietary Supplements

Something to Say About Soy

Apparently the U.S. Food and Drug Administration (FDA) is planning to remove soy from the “official” list of heart healthy foods, but a group of Canadian scientists have something to say about it.

(Note: I couldn’t find a press release from the FDA announcing the removal of soy from the heart healthy list, but should I find it, I will attach it here.)

I’m working on an article right now about lipoproteins, but here’s a brief description to get us started. High-density lipoprotein (HDL) is usually referred to as “good” cholesterol, and this is because it is associated with clearing cholesterol from the body through the liver and preventing plaque build-up in the arteries (plaque build-up is bad; it leads to heart disease).

Low-density lipoprotein (LDL) on the other hand is the “bad” cholesterol, and it gets its bad rep from its association with coronary artery disease and carrying cholesterol to the arteries. The general goal is to maintain high levels of HDL and low levels of LDL. Stay tuned for more on lipoproteins.

The study was a meta-analysis of 43 existing trials evaluating soy to determine whether removing soy is the right move or not. Meta-analyses take one subject and quantitatively analyze a variety of different studies that all focus on that one subject.

Out of 43 trials, 41 examined soy protein and its effect on LDL. All 43 trials contained data about “total cholesterol.”

For reference, results from a typical blood test you might have at your annual doctor’s appointment will report on:

  • Presence of anemia or infection
  • Kidney and liver function
  • Electrolyte levels
  • Diabetes status
  • Thyroid function
  • Cholesterol levels

Among the cholesterol levels, the lab will report on:

  • Total cholesterol
  • LDL cholesterol
  • HDL cholesterol

In this particular research article, scientists highlighted a soy protein that reduced LDL cholesterol by three to four percent. The lead author of the study says that this number is small but significant and that reducing saturated fat and cholesterol-rich meat consumption in a diet that includes soy protein could be even more beneficial for cholesterol levels.

Researchers from this study only examined research studies that the FDA has referenced in the past, and the lead author (from St. Michael’s Hospital in Toronto) pointed out that soy protein, as a part of a plant-based diet, is “in line with Health Canada’s recently released food guide.”

Read about that food guide here.

St. Michael’s Hospital press release

History of Dietary Recommendations in the United States

In some shape or form, as early as the 19th century Americans have been making dietary recommendations and heeding advice provided by experts.

Early 20th Century

Chemist Dr. Wilbur Olin Atwater’s 1904 publication “Principles of Nutrition and Nutritive Value of Food” was based on:

  • Variety
  • Proportionality and moderation
  • Measuring calories
  • An efficient, affordable diet focusing on nutrient-rich foods and less fat, sugar, and starch

Soon after the initial discovery of individual vitamins in 1910, nutritionist Carolina Hunt’s 1916 “Food for Young Children” created new categories: milk and meat, cereals, vegetables and fruits, fats and fatty foods, and sugars and sugary foods.

Mid-20th Century

The first Recommended Dietary Allowances (RDAs) were created in 1941 for calories, protein, iron, calcium, and vitamins A, B1, B2, B3, C, and D. RDAs are now defined as the “average daily level of intake sufficient to meet the nutrient requirements of nearly all (97%-98%) healthy people.” The Food and Nutrition Board of the National Academy of Medicine also defined “adequate intake” (AI; “established when evidence is insufficient to develop an RDA and is set at a level assumed to ensure nutritional adequacy”) and “tolerable upper intake level” (UL; (maximum daily intake unlikely to cause adverse health effects”).

From 1943 to 1956, the United States Department of Agriculture (USDA) introduced the “Basic 7” a nutritional guide devoted to maintaining standards during wartime food rationing:

  • Green and yellow vegetables
  • Oranges, tomatoes, grapefruit, cabbage, salad greens
  • Potatoes and other vegetables and fruits
  • Milk and dairy products
  • Meat, poultry, fish, eggs, beans, peas, nuts, peanut butter
  • Bread, flour, cereals
  • Butter and fortified margarine

Late 20th Century

The list was condensed down to the “Basic Four” between 1956 and 1992:

  • Vegetable and fruits: 4+ servings recommended daily
  • Milk: 4+ servings for teens and 2+ for adults
  • Meat: 2+ servings
  • Cereals and breads: 2-4 servings

In 1992 came the Food Guide Pyramid, with a particular focus on expressing the recommended servings of each food group based on their location within the pyramid. The first version of the infamous pyramid-shaped chart featured fruits and vegetables as the biggest group. But pressure from the grain, meat, and dairy industries led to the final version of the chart featuring brain, cereal, rice, and pasta as the foundation of the pyramid. The Food Guide Pyramid was replaced with “MyPyramid” in 2005, which reverted to colorful vertical wedges and a running ascending the stairs to highlight the importance of exercise.

21st Century

The USDA’s current nutrition guidelines take the form of “MyPlate” – an initiative which began in 2011 and concentrates on five key food groups:

  • 30% grains
  • 30% vegetables
  • 20% fruits
  • 20% protein
  • Small portion of dairy

Additional recommendations include:

  • Portion control
  • Eat whole grains
  • Drink fat-free or low-fat milk over full-fat milk
  • Eat less sodium
  • Drink more water and less sugar-sweetened drinks

Key criticisms of MyPlate stem from the fact that the chart does not highlight plant sources of protein like beans and nuts. A similar but more plant protein-centric chart is Harvard’sHealthy Eating Plate,” which was created in response to deficiencies identified in MyPlate.

This century-long saga of changing recommendations depicts the fickleness of nutrition science and the unfortunate influence of the food industry on governmental dietary recommendations. We’ll never know the full story, but it is likely that nutrition experts in the early nineties involved in developing the Food Guide Pyramid knew full well that the bulk of your plate should be green (i.e. veggies) and not tan (i.e. bread and pasta). But influence from other food industries kept the Food Guide Pyramid from being 100 percent reliable. Who knows how this affected the obesity epidemic that currently plagues our country…

I hope you’ll excuse my rant and accept assurance that I am of course aware that there are a lot of other factors exacerbating the issue of obesity (processed food, fast food, sedentary living and working, etc.). None of us were “in the room where it happens” back in the early nineties (yes, that’s a Hamilton nod), so we can’t say for sure why the Food Guide Pyramid was developed in the way that it was. I also think I’m particularly sensitive about this era of government dietary recommendations because this is the guide that I grew up with, and it was the first major educational exposure I had to what a healthy diet looks like.

All in all, I do think that MyPlate is a great tool and shows that nutrition science (and the USDA) are moving in the right direction. My hope is that nutrition science and governmental recommendations will only get better and more accurate. Plus, did you hear about recent legislation proposed by democratic Congressman Tim Ryan to create a National Nutrition Institute under the National Institutes of Health? So cool.

Thoughts of a Subject Matter Expert’s (SME) Deskmate

I was doing some research for an article I was writing about post-exercise performance and metabolism. The study under review was comparing results between a fasted and fed pre-exercise state. The abstract of the research article I was reading (link) mentioned the acronym “FFA” but did not explain what it meant. In my training as a technical writer, it is certainly “against the rules” to use an acronym before first spelling it out. When you play by the rules, the acronym makes its first appearance only in parenthesis. At least, this is what I was taught.

What does one do when they are not familiar with an acronym? They Google it, of course. But when I Googled “FFA” it should come as no surprise that my first ten Google search results were articles about Future Farmers of America. I knew that was not the FFA I was looking for (see image). Immediately aware that I would to dig through many layers of Google search results before identifying the “true” FFA, I finally remembered that my very own desk mate actually got her PhD in foods and nutrition and her Master’s in exercise physiology.

“Kristine, what would you think ‘FFA’ stands for in the context of post-exercise metabolism?”

Without hesitation, Kristine answers, “free fatty acids.”

Now, I have been writing about health and nutrition professionally for almost four years – many times about the importance of omega-3 and omega-6 fatty acids (check it out), but even I could not come up with the words “free fatty acids” when I came across an unfamiliar acronym. If I had to seek consultation to identify the words, how would a true lay-person with no direct access to PhDs have figured it out?

For those who care at all about scientifically literacy, we know that it is rare for a lay-person to pick up and attempt to read an academic article. There are also some who would argue (including me, depending on my mood) that a lay-person should not attempt to read an academic article, with the concern that the piece – packed with jargon and laden with passive language – would only confuse and dishearten the reader. However, for those who may be on the side of encouraging lay interaction with scientific academia, inclusion of the “FFA” acronym is an issue. What are we going to do about it?

I have some thoughts…

TO BE CONTINUED…

Getting the Tattoo

What’s happening to your skin when you’re getting a tattoo?

Getting a tattoo is like getting multiple injections of ink in a concentrated location on the skin – of course usually in a meaningful pattern according to the tattoo design. Tattoo needles take the ink through the epidermis (outer layer) into the dermis (second layer).

  • The epidermis is responsible for new skin cell production. Think about your skin peeling after a sunburn and scabs forming when you get a cut. This layer of the skin also produces melanin, dictating what color your skin is. Additionally, protective immune cells live in the epidermis. Think about how much nasty stuff your skin is exposed to on a regular basis. These immune cells are hard at work 24/7. First-degree burns are those that affect the epidermis.
  • The dermis has its own set of duties, including sweat production, sensation, hair growing, oil-making, and ferrying blood to and from the epidermis. Second-degree burns are those that affect the epidermis and part of the dermis.

The immune cells living in the epidermis don’t know that the needle piercing the skin is something you’ve voluntarily agreed to do (actually paying someone to do). They react as if the body is under attack, triggering the inflammatory response. You’re familiar with the immune response if you’ve ever cut yourself, scratched a bug bite, or gotten a sunburn. I’m going to go out on a not-to-flimsy limb here and say you’ve definitely experienced the inflammatory response during your lifetime.

When immune cells in the epidermis trigger the inflammatory response, the immune system goes on high alert, sending troops of specialized immune cells to the wound site. This is also why you feel pain during a tattoo (and other wounds) – your body is telling you that you’re under attack and you need to GTFO.

The ink delivered by the tattoo is taken up by immune cells called macrophages, which specialize in engulfing particles and digesting them to “clean up debris” at a wound site. Skin cells called fibroblasts also take up ink. Whichever way the ink goes, those cells stay in the dermis permanently, providing the “a tattoo is forever” quality that makes grandmothers everywhere furrow the brows and purse their lips in disapproval.

Science Kara in 2017: Sifting Through Nutrition Research for the Truth

Following trends in nutrition science can seem confusing, frustrating, and even pointless. A lot of nutrition research is funded by big players in the food industry which can lead to published results that are potentially biased and misleading.

However, I like to encourage people not to give up on nutrition science altogether. Like anything else, it is imperfect, and more experts are dedicating their research to understanding the beneficial aspects of specific foods every day.

I am a big fan of the research conducted at the North Carolina Research Campus, where scientists focus on specific fruits and vegetables (F&V), their different components, and what these components can do for specific bodily functions. But today I refer to a recent review of nutrition studies published by the American College of Cardiology, where leading experts are focusing on digging through the controversy and returning with a “bottom line.” For example, are eggs good for you because they contain protein or bad for you because they are high in cholesterol? You have probably heard both arguments, and the contradiction can be confusing enough to make you want to forget about “trying to be healthy” all together because of the way nutrition “experts” cannot seem to agree on a dependable, official standard.

There is still a large volume of knowledge that scientists have yet to access concerning the nutritional components of F&V and other healthy foods and how they work to heal the body and prevent disease, so do not expect the recent review to be a flawless and timeless new guide to eating right. Instead, take it in as a reliable source and an accurate representation of the body of work that encompasses nutrition research.

If you decide make a lifestyle change because of the information the review has to offer, that is great, but if you continue to shun the idea of altering your eating habits because of the possibility of the information changing in the future, that is your decision. But come on, should the essential message present in the review, that relying on a mostly plant-based diet is the best way to prevent disease, really come as a surprise to you?

The review discusses different diet patterns including fads and trends, problems with modern nutrition research, and controversies about the consumption of different foods. I am going explore each topic one by one, but I also encourage you to check out the review for yourself. It is easy to read. For even lighter reading, here is a press release about the review from the American College of Cardiology. Stay tuned.

What You Haven’t Heard About the “Brain-Eating” Amoeba

A recent report of a death from a specific type of organism that causes brain disease has millions of people concerned about going swimming. The loss of life from this disease is devastating, but there’s actually almost no reason why people should stop going to the U.S. National White Water Center (WWC) in Charlotte, North Carolina, where officials are still not positive the female from Ohio was exposed to the disease-causing organism.

home_page_image_naegleria-vjf5-a
Naegleria fowleri | Credit: CDC

Naegleria fowleri is an amoeba species that causes an extremely rare infection of the brain called primary amebic meningoencephalitis. Less than ten cases per year have been reported in the United States for the past 50 years, with just 37 infections reported to the Centers for Disease Control and Prevention (CDC) during 2006 and 2015. However rare the disease may be, infections do occur as seen in the unfortunate report of an Ohio female visiting the WWC with a church youth group.

It’s difficult to resist feeling a little bit afraid after hearing this story on the news, especially since the media refers to the amoeba as “brain-eating.” The reality is that N. fowleri breaks down brain tissue, causing death from brain swelling. Meningitis, or the infection of the brain and/or spinal cord, is not unique to N. fowleri. Meningitis occurs much more often as a result of a viral infection than from an amoeba or other parasite.

Additionally, it is important to note that you are only at risk for primary amebic meningoencephalitis if N. fowleri goes up your nose. If you swallow contaminated water, you’re fine. If you’re swimming in the ocean, you’re safe (N. fowleri doesn’t like salty water). The amoeba is only dangerous if it goes up your nose, which contributes to the rarity of this disease.

“The number of yearly cases of death resulting from this rare amoebic infection is so low that there is absolutely no reason to think that the White Water Center is any more dangerous than a lake or any other fresh water body of water,” said molecular biologist Christy Esmahan, PhD. “The media likes to sensationalize rare infections, but the truth is that you are far more likely to die of drowning in a pool than of contracting this infection at the WWC or anywhere else.”

Many Facebook users and Twitter scrollers are probably more likely to click “share” or “retweet” than they are to actually read any of the dozens of news stories covering this incident. Let’s look at some of the lead titles:

“Teen dies from brain-eating amoeba infection after visit to Whitewater Center”

“Brain-Eating Amoeba Eyed in Death of Ohio Teen”

“Ohio woman dies from infection caused by ‘brain-eating amoeba’”

Am I hooked after reading these titles? Yes. Is my mom canceling her trip to the WWC this weekend? Most likely. Does this title really describe the situation? Not entirely.

Let’s go over some of the key points:

  1. Meningitis from this particular amoeba is extremely rare. You’re no more likely to contract this disease from the WWC in Charlotte than you are at any lake, river, or other non-saline body of water in the world.
  2. Officials are not even sure if it was actually the WWC where the amoeba was contracted. The WWC is still running under regular operation, and scientists are testing the water for amoeba right now.
  3. You are not at danger from contracting meningitis from this amoeba by drinking contaminated water. It has to go up your nose to be dangerous.

Know the facts, stay informed, and don’t be afraid!

https://twitter.com/ScienceKara 

Whitewater-2000x800_c
Credit: U.S. National White Water Center

Capturing Truly Renewable Energy

Scientists have reached a major milestone in the search for renewable energy, and it is in the form of an altered enzyme encased in a protective viral capsid.

From Indiana University, lead researcher Trevor Douglas and his team used two Escherchia coli (E. coli) genes, hyaA and hyaB to produce hydrogenase in the lab. E. coli is commonly used in the lab as a model organism and can often be the cause of food poisoning (CDC). While being sheltered in a protective shell from bacteriophage 22, a virus that infects bacteria, modified hydrogenase has the power to catalyze the formation of hydrogen by breaking the chemical bonds of water.

In nature, hydrogenase is required by most microorganisms for energy metabolism (Structure). Harnessing the power of hydrogenase could be key for creating renewable energy.

“You don’t need to mine it; you can create it at room temperature on a massive scale using fermentation technology; it’s biodegradable,” said Douglas on the modified enzyme. “It’s a very green process to make a very high-end sustainable material.”

The new enzyme is called “P22-Hyd,” and Douglas’ team reports that it is 150 times more efficient than the enzyme in its natural state.

“The end result is a virus-like particle that behaves the same as a highly sophisticated material that catalyzes the production of hydrogen,” Douglas said. His study was published in Nature Chemistry earlier this month.

P22-Hyd costs less to make, is more environmentally friendly, and can also reverse its effect, recombining the chemical bonds of water to generate power.

“It’s truly renewable,” Douglas said.

Next, Douglas and his team set out to make P22-Hyd the best candidate for creating hydrogen power by activating a “catalytic reaction with sunlight.” If they continue to be successful, highly efficient, modified hydrogenase could be the future of providing inexpensive and efficient fuel.

(Image credit: pulseheadlines.com)

What’s the deal with gluten?

In the last decade, the presence of “gluten-free” products has drastically increased on our grocery store shelves, TV commercials, and in our conversations. “She’s gluten free now” is a statement we hear often while catching up with friends. Why is gluten all of a sudden such a problem? What IS gluten? Should everyone eliminate gluten from their diet? All of these questions and more will soon be answered in a 3-part series of blog posts about gluten and the recently popular gluten-free diet trend. I plan to describe gluten and the foods it is naturally found in and also discuss the nature of gluten-free substitutes. Plus, look forward to exclusive interviews with UNC Chapel Hill student, Bailey Brislin, as she explains why she follows a gluten-free diet, and Dr. Vaishali Mankad, a practicing allergist at Allergy Partners of Raleigh.

Understanding the biology surrounding gluten as well as its impact on our health is important. We are constantly in search of the best diet to follow for optimal health, and the media has a huge impact on what we think will help us lose weight or be healthier.

Is eliminating gluten from your diet the right choice for you? Stay tuned to find out! 

UNC Chapel Hill joins GlaxoSmithKline in the fight against HIV/AIDS

This morning at 9:30, UNC Chapel Hill Chancellor Carol Folt, along with GlaxoSmithKline CEO Andrew Witty, announced the collaboration of their respective institutions with a shared goal in mind: finding a cure for HIV/AIDS.

Just 24 hours after leading the commencement ceremony for 6,053 UNC Chapel Hill students, Folt introduced the new company to UNC’s campus, Qura Therapeutics. Folt assured listeners that everyone involved, scientists and investors alike, will be 100% committed to the project. Folt also stressed the significance of their goal as cure science (as opposed to treatment therapies). Although the HIV/AIDS cure efforts at Qura Therapeutics are projected to last for at least a decade, Folt discussed the sense of urgency that everyone involved in the project feels on a daily basis.

GSK will be 300 years old this year, an age even greater than UNC Chapel Hill, the nation’s oldest public university. The UNC/GSK collaboration will be a 50/50 partnership, a surprising move for GSK, which already brings in millions of dollars as the second largest producer of drugs for treating HIV. In addition to words from Chancellor Folt, there were also speeches from GSK CEO Andrew Witty, NC Governor Pat McCrory, and major scientific contributors: Dr. David Margolis from the UNC School of Medicine and Dr. Zhi Hung from GSK.

Stressing the significance in working together was a common theme throughout the morning announcement. Governor McCrory also mentioned the opportunity to simultaneously “save lives and create jobs.” McCrory highly praised UNC as the top university in the state and Chapel Hill as the “capital of the research area” in North Carolina. He brought to light the significance of the UNC/GSK partnership as bringing deserved attention to the research projects conducted in North Carolina at our prestigious universities – a force to be reckoned with on the same level as in Silicon Valley, Boston, and New York. However, McCrory also reminded the audience and those watching on YouTube via a live feed that the most important priority was saving lives through curing HIV/AIDS.

The collaborative research and development model to be implemented by the fusion of efforts between UNC and GSK is a monumental move in the search for a cure to HIV/AIDS.

However, questions that remain are as follows:

How long until scientists find and produce a cure?

Will the cure be affordable and accessible to the lower classes in our nation and abroad?

There is a long road ahead. In the words of UNC professor Dr. David Margolis, “it’s time to get to work.”

 
GSK Press Release: